Abstract

Multifunctional flexible electronics integrated with superhydrophobicity and flexible sensing can greatly promote broader applications. However, the hierarchical roughness morphology of superhydrophobic surfaces is vulnerable to complex mechanical deformations of stretchable sensors leading to degradation of hydrophobic properties, so constructing robust superhydrophobic stretchable sensors remains challenging. Herein, we propose a facile strategy to fabricate superhydrophobic stretchable sensors based on self-assembled carbon nanotube (CNT) films at the air-water interface. The customizable functions of superhydrophobic stretchable sensors can be achieved by controlling the combination of the CNT film and polydimethylsiloxane (PDMS) through a simple and efficient interfacial transferring strategy. Even under large mechanical deformations, the developed sensors can present excellent robustness and superhydrophobicity with a water contact angle of 150.9° at 80% strain. As a proof-of-concept, this work demonstrates their potential application in self-sensing drag-reduction shipping, which is expected to realize greener, more sustainable and safer aquatic transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.