Abstract
Recently, the membrane separation materials show promising applications in the fields of crude oil removal because of their low energy consumption and less secondary pollution. However, the membrane separation materials suffer problem of low separation efficiency due to the high viscosity of crude oil. Here, a superhydrophobic material with Joule heat and photothermal effect was prepared by decorating the delignified wood with reduced graphene oxide (GSH) and vinyl terminated polydimethylsiloxane (V-PDMS) through thiol-ene click reaction. The prepared PDMS@GSH wood exhibited stable superhydrophobicity with a water contact angle of 156°. Meanwhile, the GSH layer provided promising electrothermal effect that endowed the PDMS@GSH wood with excellent crude oil/water separation capability under the Joule heat with a surface temperature of 139 °C and separation rate of 1.78 × 105 kg m−3 h−1. Besides, the PDMS@GSH wood displayed a good photothermal effect that assisted with the Joule heat to heat the wood for crude oil removal to save energy. More importantly, the PDMS was crosslinked with GSH on the wood via thiol-ene click reaction, leading to the stable superhydrophobicity and electrical conductivity in strong acid or alkali environment. This material has broad application prospects in crude oil clean-up due to its high separation speed and easy large-scale production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.