Abstract

A versatile hybrid processing method that combines electrostatic deposition of microparticles and subsequent anisotropic plasma etching is described that can generate superhydrophobic engineering surfaces with tunable bimodal roughness and a thin hydrophobic fluorocarbon film. These surfaces exhibit contact angles with water of more than 160° for particle coverage beyond a threshold value. A geometric model based on air-trapping ability is developed to explain this observed threshold value of particle coverage and extended to arbitrary rough surfaces utilizing statistical roughness parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.