Abstract

We demonstrate, through numerical simulations, the generation of stable vortex lattices in light condensates. This can be achieved by propagating several concentric laser beams with nested vortices of different topological charges in an optical material with a cubic-quintic nonlinearity. We have considered several initial conditions, and in all the cases the net topological charges of the resulting lattice is equal to the topological charge of the initial outer vortex. The lattice exhibits rotation similar to vortex motion in superfluids. These vortex arrays could be used to implement all-optical photonic crystal fibers. Our results also apply to Bose-Einstein condensates in the presence of three-body elastic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.