Abstract

We study superfluidity in the one-dimensional Bose-Hubbard model using a variational matrix product state technique. We determine the superfluid density as a function of the Hubbard parameters by calculating the energy cost of phase twists in the thermodynamic limit. As the system is critical, correlation functions decay as power laws and the entanglement entropy grows with the bond dimension of our variational state. We relate the resulting scaling laws to the superfluid density. We compare two different algorithms for optimizing the infinite matrix product state and develop a physical explanation why one of them (VUMPS) is more efficient than the other (iDMRG). Finally, we comment on finite-temperature superfluidity in one dimension and how our results can be realized in cold-atom experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.