Abstract

Monolayer transition metal dichalcogenides (TMDs) with spin-valley coupling are a well-studied class of two-dimensional materials with potential for novel optoelectronics applications. Breaking time-reversal symmetry via an external magnetic field or supporting magnetic substrate can lift the degeneracy of the band gaps at the inequivalent $K$ and ${K}^{\ensuremath{'}}$ high symmetry points, or valleys, in the monolayer TMD Brillouin zone, a phenomenon known as valley splitting. However, reported valley splittings thus far are modest, and a detailed structural and chemical understanding of valley splitting via magnetic substrates is lacking. Here we probe the underlying physical mechanism with a series of density functional theory (DFT) calculations of magnetic atoms with varying coverage on the surface of prototypical monolayer ${\mathrm{WSe}}_{2}$ and ${\mathrm{MoS}}_{2}$ TMDs. Near-valence band edge energies for variable magnetic atom height, lateral registry, and magnetic moment are calculated with DFT, and trends are rationalized with a model Hamiltonian with second-order spin-dependent exchange coupling. From our analysis, we demonstrate how large valley splittings may be achieved and that the valley splitting can be understood with a superexchange mechanism, which strongly depends on overlaps of TMD Bloch states at the valley extrema with the localized $d$ states of the magnetic atom, as well as the out-of-plane component of the magnetic moment of the magnetic atom. Our calculations provide a basis for understanding prior measurements of valley splitting and suggest routes for enhancing valley splitting in future systems of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.