Abstract
A novel singular superelement (SSE) formulation has been developed to overcome the loss of accuracy encountered when applying the standard finite element schemes to two-dimensional elliptic problems possessing a singularity on the boundary arising from an abrupt change of boundary conditions or a reentrant corner. The SSE consists of an inner region over which the known analytic form of the solution in the vicinity of the singular point is utilized, and a transition region in which blending functions are used to provide a smooth transition to the usual linear or quadratic isoparametric elements used over the remainder of the domain. Solution of the finite element equations yield directly the coefficients of the asymptotic series, known as the flux/stress intensity factors in linear heat transfer or elasticity theories, respectively. Numerical examples using the SSE for the Laplace equation and for computing the stress intensity factors in the linear theory of elasticity are given, demonstrating that accurate results can be attained for a moderate computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.