Abstract

As ultralight and superelastic aerogels are quite desirable for pressure sensing and energy storage applications, superelastic and ultralight carbon nanofiber (CNF)/transition metal carbides and carbonitrides (MXenes) hybrid aerogels with anisotropic microchannels are thus fabricated by liquid nitrogen-assisted unidirectional-freezing followed by freeze-drying. The CNFs with high aspect ratios entangle and assemble into the interconnected scaffolds, while the MXene sheets enhance structural stability of the framework of CNFs and endow the aerogels with satisfactory electronic conductivities. Benefiting from the stable architecture with orientated microchannels, the CNF/MXene aerogel (CNF/MX) with an ultralow density of 4.87 mg cm−3 exhibits superb compressible resilience at the strain of 50% for at least 5000 cycles and a high strain of 95% for 500 cycles. Importantly, the outstanding strain- or pressure-responses endow the CNF/MX aerogel sensor with high sensitivity (65 kPa−1), ultralow detection limit (<5 Pa), rapid response (26 ms), large workable strain range (0–95%), and superb response stability. Furthermore, the presence of MXene with excellent electrochemical activity makes the binder-free CNF/MX electrode exhibit a high rate performance with 80% capacitance retention when the current density increases by 100 times and a high cycling stability with capacitance retention of 90% after 20,000 cycles at 5 A g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.