Abstract

We treat the nonequilibrium motion of a single impurity atom in a low-temperature single-species Fermi sea, interacting via a contact interaction. In the nonequilibrium regime, the impurity does a superdiffusive geometric random walk where the typical distance traveled grows with time as $\sim t^{d/(d+1)}$ for the $d$-dimensional system with $d\geq 2$. For nonzero temperature $T$, this crosses over to diffusive motion at long times with diffusivity $D\sim T^{-(d-1)/2}$. These results apply also to a nonzero concentration of impurity atoms as long as they remain dilute and nondegenerate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.