Abstract

In classical work, Matheron and the Marsilly showed that superdiffusive scaling of mean-square displacements occurs in transport diffusion for stratified flows with steady simple shear layers and long-range spatial correlations. More recently the authors have calculated a formula for the non-Gaussian large-scale long-time renormalized Green function for these problems. Here the scaling laws and renormalized Green functions for diffusion in “nearly stratified” flows are studied; in such flows the simple shear layer with long-range correlations is perturbed by incompressible flows with short-range correlations. Here it is established that these flows belong to the same universality class as the simple shear layers, with a renormalized Green function with a similar structure but reflecting homogenization by the transverse displacements. The tools in the analysis involve a modification of homogenization theory and also rigorous diagrammatic perturbation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.