Abstract

Achieving clay dispersion and improving clay−polymer interactions are keys to producing superior nanocomposites. A supercritical CO2 (scCO2) processing method was utilized to prepare high molecular weight polystyrene (PS)/Cloisite 10A nanocomposites with significant dispersion and rheological enhancement. The effects of scCO2 processing, presence of cosolvent, and clay weight fraction on clay dispersion and polymer−clay interactions in nanocomposites were investigated. Rheology, WAXD, and TEM of the nanocomposites indicate that substantial improvements in the rheological properties of scCO2 nanocomposites are the result of increased dispersion and polymer−clay interactions. At low frequencies, the elastic plateau modulus of the scCO2-processing nanocomposites (5 wt % clay loading) is more than 40-fold higher than benchmark solution-blended samples. Our results suggest that the substantial contacting with scCO2, followed by rapid depressurization, produces a combination of disorder and dispersion of this “...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.