Abstract

Understanding supercritical gas adsorption in porous carbons requires consistency between experimental measurements at representative conditions and theoretical adsorption models that correctly account for the solid’s textural properties. We have measured unary CO2 and CH4 adsorption isotherms on a commercial mesoporous carbon up to 25 MPa at 40 °C, 60 °C and 80 °C. The experimental data are successfully described using a model based on the lattice Density Functional Theory (DFT) that has been newly developed for cylindrical pores and used alongside Ar (87K) physisorption to extract the representative pore sizes of the adsorbent. The agreement between model and experiments also includes important thermodynamic parameters, such as Henry constants and the isosteric heat of adsorption. The general applicability of our integrated workflow is validated by extending the analysis to a comprehensive literature data set on a microporous activated carbon. This comparison reveals the distinct pore-filling behaviour in micro- and mesopores at supercritical conditions, and highlights the limitations associated with using slit-pore models for the characterisation of porous carbons with significant amounts of mesoporosity. The lattice DFT represents a departure from simple adsorption models, such as the Langmuir equation, which cannot capture pore size dependent adsorption behaviour, and a practical alternative to molecular simulations, which are computationally expensive to implement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.