Abstract

A superconvergent isogeometric formulation is presented for the transient analysis of wave equations with particular reference to quadratic splines. This formulation is developed in the context of Newmark time integration schemes and superconvergent quadrature rules for isogeometric mass and stiffness matrices. A detailed analysis is carried out for the full-discrete isogeometric formulation of wave equations and an error measure for the full-discrete algorithm is established. It is shown that a desirable superconvergence regarding the isogeometric transient analysis of wave equations can be achieved by two ingredients, namely, the design of a superconvergent quadrature rule and the criteria to properly define the step size for temporal integration. It turns out that the semi-discrete and full-discrete isogeometric formulations of wave equations with quadratic splines share an identical quadrature rule for a sixth-order accurate superconvergent analysis. Meanwhile, the relationships between the time step size and the element size are presented for various typical Newmark time integration schemes, in order to ensure the sixth-order accuracy in transient analysis. Numerical results of the transient analysis of wave equations consistently reveal that the proposed superconvergent isogeometric formulation is sixth-order accurate with respect to spatial discretizations, in contrast to the fourth-order accuracy produced by the standard isogeometric approach with quadratic splines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.