Abstract

In this paper, the superclose and superconvergence analysis of the nonlinear time-fractional thermistor problem are investigated by bilinear finite element method (FEM) for a fully-discrete scheme, in which the Caputo derivative is approximated by the classical L1 method. By dealing with the error estimates in the spatial direction rigorously, which are one order higher than the traditional FEMs, the superclose estimates in H1-norm are obtained for the corresponding variables based on the special properties of this element together with mean value technique. Subsequently, the global superconvergence results are derived by employing the interpolation postprocessing approach. Finally, a numerical experiment is carried out to confirm the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.