Abstract

Electrical resistivity and alternating current susceptibility measurements were performed for the spin–ladder compound SrCa13Cu24O41 under hydrostatic pressure up to 8 GPa. The superconducting transition was observed below TC = 14.7 K at pressures above 2 GPa. By using high-quality single crystals, the bulk superconductivity with a volume fraction of 50% and temperature quadratic behavior of the normal state resistivity were observed above 3.7 GPa. They suggest that a strong interladder interaction induces the bulk superconductivity and transforms the system into a Fermi-liquid-like state. The optimal pressure was in a crossover region and the highest TC was observed without going through the bulk superconducting state. Our results suggest that the superconducting state on the crossover phenomenon presents the feature of the doped two-leg spin–ladder system because the spin gap was observed in this compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.