Abstract

Superconductivity (SC) or superfluidity (SF) is observed across a remarkably broad range of fermionic systems: in BCS, cuprate, iron-based, organic, and heavy-fermion superconductors, and superfluid helium-3 in condensed matter; in a variety of SC/SF phenomena in low-energy nuclear physics; in ultracold, trapped atomic gases; and in various exotic possibilities in neutron stars. The range of physical conditions and differences in microscopic physics defy all attempts to unify this behavior in any conventional picture. Here we propose a unification through the shared symmetry properties of the emergent condensed states, with microscopic differences absorbed into parameters. This, in turn, forces a rethinking of specific occurrences of SC/SF such as cuprate high-temperature superconductivity, which becomes far less mysterious when seen as part of a continuum of behavior shared by a variety of other systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.