Abstract

Thick FeSe films (1–2 μm) were grown from high temperature solution with SeSn as the flux. Electron backscatter diffraction confirmed the films of tetragonal β phase with high crystallinity. Superconducting transition was observed by magnetic measurements, with the onset T c of 6.1 K for the as-grown films and rising to 6.9 K after post-growth annealing at 400 °C, which was still 1.5 K lower than the sintered powder samples. X-ray photoelectron spectroscopy showed that the Fe 2p 3/2 binding energy in the FeSe compound was composed of two peaks at 707.8 eV and 706.6 eV, respectively. The former was close to the value of Fe in polarized ionic bonds, while the later had the typical value in metallic bondings. The ratio of the two bondings was 1.56 and 1.94 for the films and sintered powders, respectively. The critical temperature may have some correlation with the ratio of the two bondings. A lower average Fe valence was probably the cause for the lower T c observed in thick films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.