Abstract

The low-temperature transport properties of titanium nitride wires with the width comparable with or much larger than the superconducting coherence length are studied experimentally. It is shown that the reduction of the width of wires does not affect the transport properties at the temperatures above the superconducting transition temperature and electron transport in this temperature range is determined by quantum contributions to the conductivity from weak localization and electron–electron interaction. It is established that the reduction of the width of wires does not change the superconducting transition temperature but completely suppresses the topological Berezinskii–Kosterlitz–Thouless transition. It is found that the threshold magnetic field increases with a decrease in the width of wires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.