Abstract
We report the direct evidence for superconductivity in Ca-intercalated bilayer graphene C6CaC6, which is regarded as the thinnest limit of Ca-intercalated graphite. We performed the electrical transport measurements with the in situ 4-point-probe method in ultrahigh vacuum under zero- or nonzero-magnetic field for pristine bilayer graphene, Li-intercalated bilayer graphene (C6LiC6) and C6CaC6 fabricated on SiC substrate. We observed that the zero-resistance state occurs in C6CaC6 with the onset temperature (T(c)(onset)) of 4 K, while the T(c)(onset) is gradually decreased upon applying the magnetic field. This directly proves the superconductivity origin of the zero resistance in C6CaC6. On the other hand, both pristine bilayer graphene and C6LiC6 exhibit nonsuperconducting behavior, suggesting the importance of intercalated atoms and its species to drive the superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.