Abstract

Concentration polarization (CP) should limit the energy and cost reducing benefits of high permeability seawater reverse osmosis (SWRO) membranes operating at a water flux higher than normal one. Herein, we propose a multiscale optimization framework coupling membrane permeability, feed spacer design (sub-millimeter scale) and system design (meter scale) via computational fluid dynamics and system level modeling using advanced supercomputing in conjunction with machine learning. Simulation results suggest energy consumption could be reduced by 27.5% (to 1.66 kWh m−3) predominantly through the use of high permeability SWRO membranes (12.2%) and a two-stage design (14.5%). Without optimization, CP approaches 1.52 at the system inlet, whereas the optimized CP is limited to 1.20. This work elucidates the optimized permeability, module design, operating scheme and benefits of high permeability SWRO membranes in seawater desalination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.