Abstract

The function of DNA as a repository of genetic information is well-known. The post-genomic effort is to understand how this information-containing filament is chaperoned to manage its compaction and topological states. Indeed, the activities of enzymes that transcribe, replicate, or repair DNA are regulated to a large degree by access. Proteins that act at a distance along the filament by binding at one site and contacting another site, perhaps as part of a bigger complex, create loops that constitute topological domains and influence regulation. DNA loops and plectonemes are not necessarily spontaneous, especially large loops under tension for which high energy is required to bring their ends together, or small loops that require accessory proteins to facilitate DNA bending. However, the torsion in stiff filaments such as DNA dramatically modulates the topology, driving it from extended and genetically accessible to more looped and compact, genetically secured forms. Furthermore, there are accessory factors that bias the response of the DNA filament to supercoiling. For example, small molecules like polyamines, which neutralize the negative charge repulsions along the phosphate backbone, enhance flexibility and promote writhe over twist in response to torsion. Such increased flexibility likely pushes the topological equilibrium from twist toward writhe at tensions thought to exist in vivo. A predictable corollary is that stiffening DNA antagonizes looping and bending. Certain sequences are known to be more or less flexible or to exhibit curvature, and this may affect interactions with binding proteins. In vivo all of these factors operate simultaneously on DNA that is generally negatively supercoiled to some degree. Therefore, in order to better understand gene regulation that involves protein-mediated DNA loops, it is critical to understand the thermodynamics and kinetics of looping in DNA that is under tension, negatively supercoiled, and perhaps exposed to molecules that alter elasticity. Recent experiments quantitatively reveal how much negatively supercoiling DNA lowers the free energy of looping, possibly biasing the operation of genetic switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.