Abstract

The composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) are promising materials for supercapacitor devices due to their unique nanostructure that combines the large pseudocapacitance of the CPs with the fast charging/discharging double‐layer capacitance and excellent mechanical properties of the CNTs. Here, we report a new electrochemical method to obtain polypyrrole (PPY)/single‐walled carbon nanotube (SWCNT) composites. In the first step, the SWCNTs are covalently functionalized with monomeric units of pyrrole by esterification of acyl chloride functionalized SWCNTs and N‐(6‐hydroxyhexyl)pyrrole. In the second step, the PPY/SWCNTs composites are obtained by copolymerizing the pyrrole monomer with the pyrrole units grafted on SWCNTs surface using controlled potential electrolysis. The composites were further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results showed good electrochemical charge storage properties for the synthesized composites based on PPY and SWCNTs covalently functionalized with pyrrole units making them promising electrode materials for high power supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.