Abstract

While diffusive, superdiffusive, and ballistic phonon transports have been widely investigated, the superballistic phenomenon, where the time index of the energy mean square displacement with respect to time is greater than 2, has been neither predicted nor observed. In this work, we report on the superballistic characteristics obtained from simulations of transient phonon ballistic-diffusive transport both during and after the input of a heat pulse into a nanoscale film. The superballistic behaviors are well described by a previously proposed model for electron wave packet spreading employing a point source and further explained by the superposition effect of heat pulses. The relative superposition time, a dimensionless parameter, is defined to describe the degree of the heat pulse superposition. The analysis of superballistic characteristics in this work is expected to guide experiments for detecting the phonon superballistic transport. Also, it provides a potential phenomenological description for the superballistic phenomena in more complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.