Abstract

Electrocatalytic N2 reduction reaction (NRR) provides a promising route for NH3 production under ambient conditions to replace traditional Haber-Bosch process. For this purpose, efficient NRR electrocatalysts with high NH3 yield rate and high Faradaic efficiency (FE) are required. Cu-based materials have been recognized catalytic active for some multi-electron-involved reduction reactions and usually exhibit inferior catalytic activities for hydrogen evolution reaction. We report here the preparation and characterization of a series of Cu-based nanowires array (NA) catalysts in situ grown on Cu foam (CF) substrate, including Cu(OH)2 NA/CF, Cu3N NA/CF, Cu3P NA/CF, CuO NA/CF and Cu NA/CF, which are directly used as self-supported catalytic electrodes for NRR. The electrochemical results show that CuO NA/CF achieves a highest NH3 yield rate of 1.84 × 10−9 mol s−1 cm−2, whereas Cu NA/CF possesses a highest FE of 18.2% for NH3 production at −0.1 V versus reversible hydrogen electrode in 0.1 M Na2SO4. Such catalytic performances are superior to most of recently reported metal-based NRR electrocatalysts. The contact angle measurements and the simulated calculations are carried out to reveal the important role of the superaerophobic NA surface structure for efficient NRR electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.