Abstract
Optical telescopes are an important tool for acquiring optical information about distant objects, and resolution is an important indicator that measures the ability to observe object details. However, due to the effects of system aberration, atmospheric seeing, and other factors, the observed image of ground-based telescopes is often degraded, resulting in reduced resolution. This paper proposes an optical-neural network joint optimization method to improve the resolution of the observed image by co-optimizing the point-spread function (PSF) of the telescopic system and the image super-resolution (SR) network. To improve the speed of image reconstruction, we designed a generative adversarial net (LCR-GAN) with light parameters, which is much faster than the latest unsupervised networks. To reconstruct the PSF trained by the network in the optical path, a phase mask is introduced. It improves the image reconstruction effect of LCR-GAN by reconstructing the PSF that best matches the network. The results of simulation and verification experiments show that compared with the pure deep learning method, the SR image reconstructed by this method is rich in detail and it is easier to distinguish stars or stripes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.