Abstract
In recent decades, the release of emerging pharmaceutical contaminants has been recognized as a challenging environmental issue. This study focuses on the adsorption of sulfamethoxazole (SMX) by pectin (Pec)-based bio-adsorbent. Pec was extracted from orange peel-waste biomass (OPB) by a microwave-assisted extraction method. Further, different concentrations of Pec from OPB (Pec-OPB); 0.5, 1, 2 and 4g were super-magnetized with Fe3O4 nanoparticles (denoted as Fe3O4@Pec-OPB(0.5g), Fe3O4@Pec-OPB(1g), Fe3O4@Pec-OPB(2g) and Fe3O4@Pec-OPB(4g), respectively). Among these synthesized bio-adsorbents, Fe3O4@Pec-OPB(1g) gave significant SMX adsorption and hence studied further in detail. Surface-morphology, structure, functional-groups, magnetic-property, and elemental-composition of facile of Fe3O4@Pec-OPB(1g) was characterized by standard analytical techniques. Different parameters for SMX adsorption on Fe3O4@Pec-OPB(1g) were investigated, such as optimal pH (4.0), kinetics (best-fitted pseudo-second-order kinetic model) and isotherm models (best-fitted Redlich-Peterson model). The maximum adsorption capacity (qm) of Fe3O4@Pec-OPB(1g) was 120 mg g−1 of SMX. Thermodynamic analysis corroborated the endothermic nature of the adsorption process. Therefore, the nano-bio-adsorbent Fe3O4@Pec-OPB(1g) exhibits excellent potential for capturing the SMX from water, suggesting that Fe3O4@Pec-OPB(1g) could be a viable option for adsorptive reclamation of hazardous cationic pollutants from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.