Abstract

N-doped biomass derived activated carbon (NBAC) with superhigh content of surface N atom (17.2 at.%) and microchannel structure was prepared successfully via one-step pyrolysis method using supramolecular melamine cyanurate (MCA) as nitrogen source, and the breakthrough sulfur capacity was very high up to 1872 mg/g for catalytic oxidation of H2S under room temperature. The superhigh content of N atoms (17.2 at.%) provided massive active sites for the catalytic oxidation of H2S and formation of sulfur radicals which further helped the dissociation of H2S and O2, resulting in continuous catalytic oxidation of H2S over NBAC after the coverage of nitrogenous sites by multilayer sulfur. Moreover, the microchannel structure with enhanced mesopore volume promoted the mass transfer of reactants and emigration of product elemental sulfur to form multilayer sulfur. This work could provide an insight into the NBAC with superhigh N-doping content for continuous catalytic oxidation of H2S at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.