Abstract

Let \(G\) be a finite simple undirected \((p, q)\)-graph, with vertex set \(V(G)\) and edge set \(E(G)\) such that \(p = |V(G)|\) and \(q = |E(G)|\). A super edge-magic total labeling \(f\) of \(G\) is a bijection \(f \colon V(G) \cup E(G) \longrightarrow \{1, 2, \dots, p+q\}\) such that for all edges \(uv \in E(G)\), \(f(u) + f(v) + f(uv) = c(f)\), where \(c(f)\) is called a magic constant, and \(f(V(G)) = \{1, \dots, p\}\). The minimum of all \(c(f)\), where the minimum is taken over all the super edge-magic total labelings \(f\) of \(G\), is defined to be the super edge-magic total strength of the graph \(G\). In this article, we work on certain classes of unicyclic graphs and provide evidence to conjecture that the super edge-magic total strength of a certain family of unicyclic \((p, q)\)-graphs is equal to \(2q + \frac{n+3}{2}\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.