Abstract
Under favorable imaging conditions, the Sentinel-2 Multi-Spectral Instrument (MSI) can provide spectacular and novel quantitative ocean surface wave directional measurements in satellite Sun Glitter Imagery (SSGI). Owing to a relatively large-swath with high-spatial resolution (10 m), ocean surface roughness mapping capabilities, changes in ocean wave energy, and propagation direction can be precisely quantified at very high resolution, across spatial distances of 10 km and more. This provides unique opportunities to study ocean wave refraction induced by spatial varying surface currents. As expected and demonstrated over the Grand Agulhas current area, the mesoscale variability of near-surface currents, documented and reconstructed from satellite altimetry, can significantly deflect in-coming south-western swell systems. Based on ray-tracing calculations, and unambiguously revealed from the analysis of Sentinel-2 MSI SSGI measurements, the variability of the near-surface current explains significant wave-current refraction, leading to wave-trapping phenomenon and strong local enhancement of the total wave energy. In addition to its importance for wave modeling and hazard prediction, these results open new possibilities to combine different satellite measurements and greatly improve the determination of the upper ocean mesoscale vorticity motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.