Abstract

Let s ( n ) = ∑ d ∣ n , d > n d s(n)=\sum _{d\mid n,~d>n} d denote the sum of the proper divisors of n n . The second-named author proved that ω ( s ( n ) ) \omega (s(n)) has normal order log ⁡ log ⁡ n \log \log {n} , the analogue for s s -values of a classical result of Hardy and Ramanujan [The normal number of prime factors of a number n [Quart. J. Math. 48 (1917), 76–92], AMS Chelsea Publ., Providence, RI, 2000, pp. 262–275]. We establish the corresponding Erdős–Kac theorem: ω ( s ( n ) ) \omega (s(n)) is asymptotically normally distributed with mean and variance log ⁡ log ⁡ n \log \log {n} . The same method applies with s ( n ) s(n) replaced by any of several other unconventional arithmetic functions, such as β ( n ) ≔ ∑ p ∣ n p \beta (n)≔\sum _{p\mid n} p , n − φ ( n ) n-\varphi (n) , and n + τ ( n ) n+\tau (n) ( τ \tau being the divisor function).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.