Abstract

Cohesion between sister chromatids is fundamental to ensure faithful chromosome segregation during mitosis and accurate repair of DNA damage postreplication. At the molecular level, cohesion establishment involves two defined events, a chromatin binding step and a chromatid entrapment event driven by posttranslational modifications on cohesin subunits. Here, we show that modification by the small ubiquitin-like protein (SUMO) is required for sister chromatid tethering after DNA damage. We find that all subunits of cohesin become SUMOylated upon exposure to DNA damaging agents or presence of a DNA double-strand break. We have mapped all lysine residues on cohesin's α-kleisin subunit Mcd1 (Scc1) where SUMO can conjugate. We demonstrate that Mcd1 SUMOylation-deficient alleles are still recruited to DSB-proximal regions but are defective in tethering sister chromatids and consequently fail to establish damage-induced cohesion both at DSBs and undamaged chromosomes. Moreover, we demonstrate that the bulk of Mcd1 SUMOylation in response to damage is carried out by the SUMO E3 ligase Nse2, a subunit of the related Smc5-Smc6 complex. SUMOylation occurs in cells with compromised Chk1 kinase activity, necessary for known posttranslational modifications on Mcd1, required for damage-induced cohesion. These findings demonstrate that SUMOylation of Mcd1 is a novel prerequisite for the establishment of DNA damage-induced cohesion at DSB-proximal regions and cohesion-associating regions (CARs) genome-wide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.