Abstract
Starting from very high-energy inelastic electron-nucleon scattering with a production of a hadronic state $X$ to be moved closely to the direction of the initial nucleon, then utilizing analytic properties of parts of forward virtual Compton scattering amplitudes on proton and neutron, one obtains the relation between nucleon form factors and a difference of proton and neutron differential electroproduction cross sections. In particular, for the case of small transferred momenta, one finally derives sum rule, relating Dirac proton mean square radius and anomalous magnetic moments of proton and neutron to the integral over a difference of the total proton and neutron photoproduction cross sections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.