Abstract

Constructing an efficient photoelectron transfer channel to promote the charge carrier separation is a great challenge for enhancing photocatalytic hydrogen evolution from water. In this work, an ultrathin 2D/2D Ti3C2T x /ZnIn2S4 heterostructure is rationally designed by coupling the ultrathin ZnIn2S4 with few‐layered Ti3C2T x via the electrostatic self‐assembly strategy. The 2D/2D Ti3C2T x /ZnIn2S4 heterostructure possesses larger contact area and strong electronic interaction to promote the charge carrier transfer at the interface, and the sulfur vacancy on the ZnIn2S4 acting as the electron trap further enhances the separation of the photoinduced electrons and holes. As a consequence, the optimal 2D/2D Ti3C2T x /ZnIn2S4 composite exhibits a high photocatalytic hydrogen evolution rate of 148.4 µmol h−1, which is 3.6 times and 9.2 times higher than that of ZnIn2S4 nanosheet and flower‐like ZnIn2S4, respectively. Moreover, the stability of the ZnIn2S4 is significantly improved after coupling with the few‐layered Ti3C2T x . The characterizations and density functional theory calculation demonstrate that the synergistic effect of the sulfur vacancy and Ti3C2T x cocatalyst can greatly promote the electrons transfer from ZnIn2S4 to Ti3C2T x and the separation of photogenerated charge carriers, thus enhancing the photocatalytic hydrogen evolution from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.