Abstract

An overall model for sulfur self-retention in ash during coal particle combustion is developed in this paper. It is assumed that sulfur retention during char combustion occurs due to the reaction between SO2 and CaO in the form of uniformly distributed non-porous grains. Parametric analysis shows that the process of sulfur self-retention is limited by solid diffusion through the non-porous product layer formed on the CaO grains and that the most important coal characteristics which influence sulfur self-retention are coal rank, content of sulfur forms, molar Ca/S ratio and particle radius. A comparison with the experimentally obtained values in a FB reactor showed that the model can adequately predict the kinetics of the process the levels of the obtained values of the SSR efficiencies, as well as the influence of temperature and coal particle size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.