Abstract

The electrocatalytic CO2 reduction reaction (eCO2RR) has been gaining increasing attention owing to its potential to contribute to sustainability in our society, although enhanced catalytic performance is a prerequisite for its implementation. Herein, Cu electrocatalysts modified with sulfur proved to selectively produce formate via aqueous eCO2RR and thus to unexpectedly prevent the mechanistic fingerprint of Cu (i.e., the CO path). Initially, sulfur-modified copper catalysts (Cu–S) were prepared by the in situ reductive reconstruction of nano CuS precursors, revealing a positive correlation between particle size and selectivity toward formate. Subsequent studies over targeted submicron Cu–S particles with varying sulfur content demonstrated their evolution under reaction conditions, attaining a similar surface state comprising metallic Cu and sulfide phases, irrespective of the initial structure of the materials. In accordance, the initial sulfur content showed only a very limited influence on the catal...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.