Abstract

Well-tailored sulfur-doped anatase titanium dioxide nanoparticles anchored on a large-area carbon sheet are designed, where the in situ sulfur-doped titanium dioxide directly comes from titanium oxysulfate and the large-area carbon sheet is derived from glucose. When applied as an anode material for sodium-ion batteries, it exhibits an excellent electrochemical performance including a high capacity [256.4 mA h g-1 at 2 C (1 C = 335 mA h g-1) after 500 cycles] and a remarkable rate of cycling stability (100.5 mA h g-1 at 30 C after 500 cycles). These outstanding sodium storage behaviors are ascribed to the nanosized particles (about 8-12 nm), good electronic conductivity promoted by the incorporation of carbon sheet and sulfur, as well as the unique chemical bond based on the electrostatic interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.