Abstract
Properties of sulfur dioxide (SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) and nitrogen dioxide (NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) adsorbed on different types of arsenenes (pristine, boron-, and nitrogen-doped arsenene) are studied with the first-principle approach, which is based on the density functional theory. Adsorption energy, adsorption distance, Hirshfeld charge, and I-V characteristic are calculated. The results demonstrate that NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> exhibit a chemisorption character on boron-doped arsenene (B-arsenene) while a physisorption character on pristine and nitrogen-doped arsenene (P- and N-arsenene) with moderate adsorption energy. Moreover, analysis of density of state shows a positive change of electronic property when the two gas molecules are adsorbed on pristine/doped arsenenes. According to the I-V characteristic curves, N-arsenene can be treated as an excellent sensing material for SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas sensor. Meanwhile, P-arsenene has a potential application in the NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.