Abstract

Chelating magnetic nanocomposites have been considered as suitable materials for removal of heavy metal ions for water treatment. In this work poly(glycidyl methacrylate-maleic anhydride) copolymer (PGMA-MAn) is modified with 4-aminobenzenesulfonic acid (ABSAc) and subsequently the product reacted with modified Fe3O4 nanoparticles and 1,2-ethanedithiol (EDT) in the presence of ultrasonic irradiation for preparation of tridimensional chelating magnetic nanocomposite. Synthesized magnetic nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), energy dispersive X-ray analysis (EDX), elemental mapping analysis (EMA), Brunauer-Emmett-Teller (BET), and thermal gravimetric analysis (TGA). The adsorption behavior of Cu(II) ions was investigated by synthesized nanocomposite in various parameters such as pH, contact time, metal ion concentration, and adsorbent dosage. The equilibrium distribution coefficient (kd) was determined and the findings prove that the kd value is approximately high in the case of all selected metal ions. The synthesized nanocomposite exhibited good tendency for removing Cu(II) ions from aqueous solutions even at an acidic pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.