Abstract

Intravenous human immunoglobulin therapy infrequently results in excessive inflammatory responses in vivo; these effects are not fully understood. We assessed whether sulfonated human immunoglobulin (SHIG) or polyethylene glycol-treated human immunoglobulin (PHIG) enhanced expression of inflammatory receptors on peripheral blood neutrophils in vitro, such as alphaMbeta2 (CD11b/CD18) and Fc gamma receptor type III (FcgammaRIII). CD11b and CD16 expression on neutrophils was measured by fluorescence flow cytometry. Various cytokines were assessed using a highly sensitive fluorescence microsphere system. SHIG enhanced/induced CD11b expression and partial aggregations on neutrophils, but PHIG did not. No detection of aggregation IgG was observed in SHIG and PHIG. SHIG-induced CD11b expression was inhibited by treatment of corticosteroid (dexamethasone) and by anti-CD16 monoclonal antibody. Concentrations of various cytokines such as interleukin (IL)-1beta, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, RANTES, tumor necrosis factor (TNF)-alpha, and interferon (INF)-gamma in culture supernatant were not significantly changed by SHIG or PHIG. SHIG and PHIG did not enhance CD16 on neutrophils. SHIG enhanced CD16-linked CD11b expression on neutrophils in vitro. CD11b induction was inhibited by dexamethasone and by anti-CD16 antibody. These in vitro results suggest that aggregations and enhancement of CD11b on neutrophils by SHIG may induce excessive inflammatory responses in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.