Abstract

The high-temperature sulfidation-oxidation corrosion resistance of protective coatings deposited on carbon and 316L steels was studied. The coatings obtained via the thermal diffusion process had multi-layered architectures and consisted of aluminides, iron borides, or iron boride–TiO2 layers. The protective coatings experienced a minimal rate of mass changes, insignificant scale formation, and no delamination and surface micro-cracking after 504 h of exposure in 1% (Vol.) H2S-air atmosphere at 500 °C. Furthermore, the coatings demonstrated a high degree of integrity compared to bare 316L stainless steel. Aluminized steels demonstrated the highest performance among the studied materials. The developed thermal diffusion coatings are promising candidates due to their enhanced stability in H2S–air atmosphere; they may be employed for protection of inner and outer surfaces of long tubing and complex shape components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.