Abstract
A detailed ionic component record was performed on EPICA Dome C ice core (East Antarctica) to a depth of 3190 m using Ion Chromatography and Fast Ion Chromatography (FIC). At depths greater than 2800 m, the sulfate profile shows intense, sharp spikes which are not expected due to the smoothing of sulfate peaks by diffusion processes. Moreover, these spikes show an "anomalous" chemical composition (e.g., unusually low acidity, high Mg(2+) concentration and high Mg(2+)/Ca(2+) ratio). These peaks and the surrounding layers also exhibit good Mg(2+) vs SO(4)(2-) and Cl(-) vs Na(+) correlations through both glacial and interglacial periods. Furthermore, the high-resolution analysis of two horizontally contiguous ice sections showed that some fraction of the impurities are characterized by a heterogeneous distribution. Altogether, these results suggest the occurrence of long-term postdepositional processes involving a rearrangement of impurities via migration in the vein network, characterized by sulfuric acidity and leading to the formation of soluble particles of magnesium sulfate salts, along with ionic association of ions in the liquid films along boundaries. This evidence should be taken into consideration when inferring information on for rapid climatic and environmental changes from ice core chemical records at great depths. At Dome C, the depth threshold was found to be 2800 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.