Abstract

Sulfate reduction rates, dissolved iron and sulfide concentrations, and titration alkalinity were measured in salt marsh soils along a transect that included areas inhabited by both the tall and short forms of Spartina alterniflora and by Spartina patens. Pore waters were collected with in situ “sippers” to acquire temporal data from the same location without disturbing plant roots. During 1984, data collected at weekly intervals showed rapid temporal changes in belowground biogeochemical processes that coincided with changes in S. alterniflora physiology. Rates of SO42 reduction increased fivefold (to >2.5 µmol ml−1 d−1) when plants began elongating aboveground yet decreased fourfold upon plant flowering. This rapid increase in rates of SO42 reduction must have been fueled by dissolved organic matter released from roots only during active growth. Once plants flowered, the supply of oxidants to the soil decreased and sulfide and alkalinity concentrations increased despite decreases in SO42− reduction and increases in SO42−: Cl− ratios. Sulfide concentrations were highest in soils inhabited by tallest plants.During 1985, S. alterniflora became infested with fly larvae (Chaetopsis apicalis John) and aboveground growth ceased in late June. This cessation was accompanied by decreased rates of SO42− reduction similar to those noted during the previous year when flowering occurred. After the fly infestation, the pore‐water chemical profiles of these soils resembled profiles of soils inhabited by the short form of S. alterniflora.The SO42− reduction rates in S. patens soils are the first reported. Rates were similar to those in S. alterniflora except that they did not increase greatly when S. patens was elongating. Tidal and rainfall events produced desiccation‐saturation cycles that altered redox conditions in the S. patens soils, resulting in rapid changes in the dissolution and precipitation of iron and in the magnitude and spatial distribution of SO42 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.