Abstract

Recent studies show that isoprene-derived organosulfates are an important fraction of ambient secondary organic aerosol (SOA), adding up to 20% to the organic mass. Organosulfates with m/z of 199 and 183 relating to C4 compounds are found in ambient and laboratory generated SOA and a sulfate radical induced oxidation of methacrolein (MACR) and methyl vinyl ketone (MVK) has been shown to be a possible formation mechanism. In the present study, experiments on the sulfate radical-induced oxidation of methacrolein and methyl vinyl ketone were performed in bulk aqueous phase, as well as in an aerosol chamber, and finally compared with ambient PM10 samples collected at a rural East German village during the summer 2008, to investigate their relevance in aqueous phase SOA formation. Samples from aqueous phase experiments and extracts from filters were analysed with UPLC/(-)ESI-IMS-QTOFMS. All the samples showed the abundance of highly oxidised organosulfates with m/z 153, 155, 167, 183 and 199 corresponding to the species found in ambient particle samples. In the bulk phase studies with laser-induced sulfate radical formation, the signal intensities increased with increasing number of laser pulses, indicating the sulfate radical-induced formation of these organosulfates. Additionally, the chamber experiments showed a particle mass growth of about 10 microg m(-3) and 4 microg m(-3) for experiments on the reactive uptake of MACR and MVK with a sulfate radical precursor (K2S2O8) in the seed particles. Correlations of the C2 to C5 organosulfate species (including the m/z 215, C5H11O7S-), detected in the ambient samples were found to be very strong (r > 0.8), indicating that these compounds are formed from similar mechanisms and under equal environmental conditions. This study shows that sulfate radical-induced oxidation in the aqueous particle phase provides a reasonable explanation for the formation of these organosulfates from methacrolein and methyl vinyl ketone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.