Abstract

In the search for novel hydrogen storage media, the III-V hydridic material $[{\text{NH}}_{4}][{\text{BH}}_{4}]$ is a natural candidate. It can store a high $\text{wt}\text{ }%$ of hydrogen and has a favorable volumetric density. Unfortunately it was found to decompose slowly at room temperature. It is of interest to consider chemically related materials, such as the series of $[X{\text{H}}_{4}][Y{\text{H}}_{4}]$ ionic solids ($X=\text{B}$,Al,Ga and $Y=\text{N}$,P,As). Even if the $\text{wt}\text{ }%$ of hydrogen in the heavier congeners is necessarily lower, they might offer superior material properties, notably higher (but not too high) stability. We have therefore performed a first-principles investigation of the cohesive energies of the $X{\text{H}}_{4}Y{\text{H}}_{4}$ solid-state materials. In addition we have analyzed the bond character and energy within the building blocks of these materials, the $X{\text{H}}_{4}^{\ensuremath{-}}$ and $Y{\text{H}}_{4}^{+}$ molecular ions, including a comparison to the $A{\text{H}}_{4}$ molecules $(A=\text{C},\text{Si},\text{Ge})$. The calculations have been performed within the density functional framework employing plane waves for the bulk materials and Slater-type functions for the molecules. A detailed study of the electronic structure reveals that the hydrides of the light (second period) elements, ${\text{BH}}_{4}^{\ensuremath{-}}$, ${\text{CH}}_{4}$, and ${\text{NH}}_{4}^{+}$, exhibit the strongest and shortest $X\ensuremath{-}\text{H}$ bonds. This is caused by Pauli repulsion effects of the hydrogen substituents with the larger cores of the heavier (third and fourth period) elements. The important consequence is that in the crystals, where the ionic hydrides retain their identity and charge, the distance between the negative and positive ions is larger in the heavier systems, hence less Madelung stabilization and a smaller cohesive energy. Moving from $[{\text{NH}}_{4}][{\text{BH}}_{4}]$ to heavier congeners thus does not seem to be a promising route to obtain more suitable materials for hydrogen storage. Other types of chemical variation (different substituents) on the $[{\text{NH}}_{4}][{\text{BH}}_{4}]$ building blocks may prove more advantageous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.