Abstract

BackgroundNecroptosis, a novel form of programmed cell death wherein the necrotic morphology is characterized by swelling of the cells, rupture of the plasma membrane, and dysfunction of the organelle, has been always observed in cardiovascular diseases. Sugarcane leaf polysaccharide (SLP) are primary components present in sugarcane leaves that exert cardiovascular protective effects. However, the positive effect of SLP and underlying mechanisms in myocardial ischemia-reperfusion (MI/R) remain unexplored. AimIn this study, the protective effects of SLP on MI/R injury were investigated under in vitro and in vivo conditions. MethodsThe protective effects of SLP on MI/R injury were assessed using tertiary butyl hydrogen peroxide (TBHP)–stimulated-H9c2 cells in the in vitro assay and using Sprague Dawley rats in the in vivo assay. ResultsIn vitro, SLP significantly reversed TBHP-induced H9c2 cell death by inhibiting necroptosis and oxidative stress. SLP exerted antioxidant activity through the Nrf2/HO-1 pathway. SLP suppressed necroptosis by decreasing phosphorylation of RIP1, RIP3, and MLKL in TBHP-stimulated H9c2 cells. In vivo, SLP attenuated MI/R injury by decreasing the myocardial infarct area; increasing myeloperoxidase and superoxide dismutase levels; and reducing malondialdehyde, interleukin-6, and tumor necrosis factor-α levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.