Abstract

The existence of phase chirality in lyotropic liquid crystals still raises questions. The mechanisms behind the transfer of chirality throughout the long-range orientational order are not yet obvious. Guest/host systems with chiral dopants in achiral host phases offer the capability of systematic investigations. We demonstrate that the large amount of accessible sugar amphiphiles exhibits remarkable structure/property relations. Their helical twisting power HTP increases strongly with the number of sugar units of a dopant molecule. The spatial range of the chirality information reaching from a chirally doped micelle to adjacent aggregates is essential for the development of phase chirality. The induced twist of the lyotropic nematic host phase is highly sensitive to small changes of the sugar type (e.g., galacto- to glucopyranose). Depending on the nature of the host phase, either the α- or the β-linkage of the sugar to the hydrophobic moiety of the sugar dopant results in larger HTP values. We propose that our amphiphilic sugar derivatives act like antennae to transfer chirality information. Their effectiveness as chiral dopants is due to a hydrophobic anchoring within the micelles and an extension of their chiral moiety far into the intermicellar region. The chirality transfer works especially well if the hydrophilic and chiral sugar moieties are oriented toward a neighboring micelle in the direction of the helix axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.