Abstract
Several sufficient conditions for the Hurwitz property of polynomials are derived by combining the existing sufficient criteria for the Schur property with bilinear mapping. The conditions obtained are linear or piecewise linear inequalities with respect to the polynomial coefficients. Making the most of this feature, the results are applied to the Hurwitz stability test for a polytope of polynomials. It turns out that checking the sufficient conditions at every generating extreme polynomial suffices to guarantee the stability of any member of the polytope, yielding thus extreme point results on the Hurwitz stability of the polytope. This brings about considerable computational economy in such a test as a preliminary check before going to the exact method, the edge theorem and stability test of segment polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.