Abstract
Purpose:The application of optically stimulated luminescence dosimeters (OSLDs) may be extended to clinical investigations verifying irradiated doses in small animal models. In proton beams, the accurate positioning of the Bragg peak is essential for tumor targeting. The purpose of this study was to estimate the displacement of a pristine Bragg peak when an Al2O3:C nanodot (Landauer, Inc.) is placed on the surface of a water phantom and to evaluate corresponding changes in dose.Methods:Clinical proton pencil beam simulations were carried out with using TOPAS, a Monte Carlo platform layered on top of GEANT4. Point‐shaped beams with no energy spread were modeled for energies 100MV, 150MV, 200MV, and 250MV. Dose scoring for 100,000 particle histories was conducted within a water phantom (20cm × 20cm irradiated area, 40cm depth) with its surface placed 214.5cm away from the source. The modeled nanodot had a 4mm radius and 0.2mm thickness.Results:A comparative analysis of Monte Carlo depth dose profiles modeled for these proton pencil beams did not demonstrate an energy dependent in the Bragg peak shift. The shifts in Bragg Peak depth for water phantoms modeled with a nanodot on the phantom surface ranged between 2.7 to 3.2 mm. In all cases, the Bragg Peaks were shifted closer to the irradiation source. The peak dose in phantoms with an OSLD remained unchanged with percent dose differences less than 0.55% when compared to phantom doses without the nanodot.Conclusion:Monte Carlo calculations show that the presence of OSLD nanodots in proton beam therapy will not change the position of a pristine Bragg Peak by more than 3 mm. Although the 3.0 mm shift will not have a detrimental effect in patients receiving proton therapy, this effect may not be negligible in dose verification measurements for mouse models at lower proton beam energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.