Abstract

Precise forecasting of streamflow is crucial for the proper supervision of water resources. The purpose of the present investigation is to predict successive-station streamflow using the Gated Recurrent Unit (GRU) model and to quantify the impact of input information (i.e., precipitation) uncertainty on the GRU model’s prediction using the Generalized Likelihood Uncertainty Estimation (GLUE) computation. The Zarrineh River basin in Lake Urmia, Iran, was nominated as the case study due to the importance of the location and its significant contribution to the lake inflow. Four stations in the basin were considered to predict successive-station streamflow from upstream to downstream. The GRU model yielded highly accurate streamflow prediction in all stations. The future precipitation data generated under the Representative Concentration Pathway (RCP) scenarios were used to estimate the effect of precipitation input uncertainty on streamflow prediction. The p-factor (inside the uncertainty interval) and r-factor (width of the uncertainty interval) indices were used to evaluate the streamflow prediction uncertainty. GLUE predicted reliable uncertainty ranges for all the stations from 0.47 to 0.57 for the r-factor and 61.6% to 89.3% for the p-factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.