Abstract

In this paper, two successive approximation techniques are presented for a class of large-scale nonlinear programming problems with decomposable constraints and a class of high-dimensional discrete optimal control problems, respectively. It is shown that: (a) the accumulation point of the sequence produced by the first method is a Kuhn-Tucker point if the constraint functions are decomposable and if the uniqueness condition holds; (b) the sequence converges to an optimum solution if the objective function is strictly pseudoconvex and if the constraint functions are decomposable and quasiconcave; and (c) similar conclusions for the second method hold also for a class of discrete optimal control problems under some assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.